R07

Set No - 3

III B.Tech I Semester Regular Examinations, Nov/Dec 2009 AERODYNAMICS-II

Aeronautical Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Describe two practical situations where oblique shocks waves are produced. How are strong and weak shocks are generated and how they effect the flow. [16]
- 2. Write about quasi-one-dimensional flow. Air flowing in a duct has a velocity of 300 m/s, pressure 1.0 bar and temperature 290 K taking γ =1.4, R=287 J/kgK. Determine
 - (a) Stagnation pressure and temperature
 - (b) Velocity of sound in the dynamic and stagnation conditions.
 - (c) Stagnation pressure assuming constant density.

[16]

- 3. Briefly write about following
 - (a) Velocity of sound
 - (b) Mach number

Code No: 45046

- (c) Flow regimes. [16]
- 4. (a) A wedge with half angle 10⁰ is placed in a flow of Mach 10 at sea-level conditions. Calculate pressure, density, temperature, Mach number of air after the shock.
 - (b) Explain in detail thin-shock layer and high-temperature flows in hypersonic flows. [8+8]
- 5. (a) Explain the working principle of six component strain gauge balance.
 - (b) Write short notes on
 - i. Wall interference
 - ii. Solid blockage effect
 - iii. Two dimensional wing

[7+9]

- 6. (a) Derive velocity potential equation for a two-dimensional, steady, irrotational, isentropic flow.
 - (b) Explain what do you understand by linearization.

[8+8]

7. (a) Discuss the variation of linearized pressure coefficient (C_p) with Mach number (M_{∞}) with a suitable plot.

- (b) A uniform supersonic stream with $M_1 = 3.0$, $P_1 = 1$ atm and $T_1 = 288$ K encounters a compression corner which deflects the stream by an angle $\theta = 20^{\circ}$. Calculate the shock wave angle and P_2 , T_2 , M_2 , P_{02} and T_{02} behind the shock
- (a) Write a short note on
 - i. Measurement errors
 - ii. Horizontal buoyancy
 - iii. Flow angularity
 - (b) Describe the methods used for measuring flow angularity in a supersonic wind tunnel.
